238 research outputs found

    Xyloglucan is released by plants and promotes soil particle aggregation

    Get PDF
    Soil is a crucial component of the biosphere and is a major sink for organic carbon. Plant roots are known to release a wide range of carbon-based compounds into soils, including polysaccharides, but the functions of these are not known in detail. Using a monoclonal antibody to plant cell wall xyloglucan, we show that this polysaccharide is secreted by a wide range of angiosperm roots, and relatively abundantly by grasses. It is also released from the rhizoids of liverworts, the earliest diverging lineage of land plants. Using analysis of water-stable aggregate size, dry dispersion particle analysis and scanning electron microscopy, we show that xyloglucan is effective in increasing soil particle aggregation, a key factor in the formation and function of healthy soils. To study the possible roles of xyloglucan in the formation of soils, we analysed the xyloglucan contents of mineral soils of known age exposed upon the retreat of glaciers. These glacial forefield soils had significantly higher xyloglucan contents than detected in a UK grassland soil. We propose that xyloglucan released from plant rhizoids/roots is an effective soil particle aggregator and may, in this role, have been important in the initial colonization of land

    Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular probes are required to detect cell wall polymers <it>in-situ </it>to aid understanding of their cell biology and several studies have shown that cell wall epitopes have restricted occurrences across sections of plant organs indicating that cell wall structure is highly developmentally regulated. Xyloglucan is the major hemicellulose or cross-linking glycan of the primary cell walls of dicotyledons although little is known of its occurrence or functions in relation to cell development and cell wall microstructure.</p> <p>Results</p> <p>Using a neoglycoprotein approach, in which a XXXG heptasaccharide of tamarind seed xyloglucan was coupled to BSA to produce an immunogen, we have generated a rat monoclonal antibody (designated LM15) to the XXXG structural motif of xyloglucans. The specificity of LM15 has been confirmed by the analysis of LM15 binding using glycan microarrays and oligosaccharide hapten inhibition of binding studies. The use of LM15 for the analysis of xyloglucan in the cell walls of tamarind and nasturtium seeds, in which xyloglucan occurs as a storage polysaccharide, indicated that the LM15 xyloglucan epitope occurs throughout the thickened cell walls of the tamarind seed and in the outer regions, adjacent to middle lamellae, of the thickened cell walls of the nasturtium seed. Immunofluorescence analysis of LM15 binding to sections of tobacco and pea stem internodes indicated that the xyloglucan epitope was restricted to a few cell types in these organs. Enzymatic removal of pectic homogalacturonan from equivalent sections resulted in the abundant detection of distinct patterns of the LM15 xyloglucan epitope across these organs and a diversity of occurrences in relation to the cell wall microstructure of a range of cell types.</p> <p>Conclusion</p> <p>These observations support ideas that xyloglucan is associated with pectin in plant cell walls. They also indicate that documented patterns of cell wall epitopes in relation to cell development and cell differentiation may need to be re-considered in relation to the potential masking of cell wall epitopes by other cell wall components.</p

    Receptor Quaternary Organization Explains G Protein-Coupled Receptor Family Structure.

    Get PDF
    The organization of Rhodopsin-family G protein-coupled receptors (GPCRs) at the cell surface is controversial. Support both for and against the existence of dimers has been obtained in studies of mostly individual receptors. Here, we use a large-scale comparative study to examine the stoichiometric signatures of 60 receptors expressed by a single human cell line. Using bioluminescence resonance energy transfer- and single-molecule microscopy-based assays, we found that a relatively small fraction of Rhodopsin-family GPCRs behaved as dimers and that these receptors otherwise appear to be monomeric. Overall, the analysis predicted that fewer than 20% of ∌700 Rhodopsin-family receptors form dimers. The clustered distribution of the dimers in our sample and a striking correlation between receptor organization and GPCR family size that we also uncover each suggest that receptor stoichiometry might have profoundly influenced GPCR expansion and diversification

    Monoclonal antibodies indicate low-abundance links between heteroxylan and other glycans of plant cell walls.

    Get PDF
    The derivation of two sensitive monoclonal antibodies directed to heteroxylan cell wall polysaccharide preparations has allowed the identification of potential inter-linkages between xylan and pectin in potato tuber cell walls and also between xylan and arabinogalactan-proteins in oat grain cell walls. Plant cell walls are complex composites of structurally distinct glycans that are poorly understood in terms of both in muro inter-linkages and developmental functions. Monoclonal antibodies (MAbs) are versatile tools that can detect cell wall glycans with high sensitivity through the specific recognition of oligosaccharide structures. The isolation of two novel MAbs, LM27 and LM28, directed to heteroxylan, subsequent to immunisation with a potato cell wall fraction enriched in rhamnogalacturonan-I (RG-I) oligosaccharides, is described. LM27 binds strongly to heteroxylan preparations from grass cell walls and LM28 binds to a glucuronosyl-containing epitope widely present in heteroxylans. Evidence is presented suggesting that in potato tuber cell walls, some glucuronoxylan may be linked to pectic macromolecules. Evidence is also presented that suggests in oat spelt xylan both the LM27 and LM28 epitopes are linked to arabinogalactan-proteins as tracked by the LM2 arabinogalactan-protein epitope. This work extends knowledge of the potential occurrence of inter-glycan links within plant cell walls and describes molecular tools for the further analysis of such links.This work was supported by the European Union Seventh Framework Programme (FP7 2007-2013) under the WallTraC project (Grant Agreement number 263916). (This article reflects the authors’ views only and the European Union is not liable for any use that may be made of the information contained herein). The work was also supported by the United Kingdom Biotechnology and Biological Research Council (BBSRC, Grant BB/K017489/1). JX acknowledges support from the Chinese Scholarship Council, TAT from a BBSRC studentship and MGR from the Danish Strategic Research Council and The Danish Council for Independent Research, Technology and Production Sciences as part of the GlycAct project (FI 10-093465). We acknowledge kind gifts of enzymes from Harry Gilbert and oligosaccharides from Sanna Koutaniemi. We thank Theodora Tryfona for mass spectrometry analysis.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00425-015-2375-

    A randomized controlled trial of amyloid positron emission tomography results disclosure in mild cognitive impairment

    Full text link
    IntroductionRecent studies suggest that Alzheimer’s disease (AD) biomarker disclosure has no discernable psychological impact on cognitively healthy persons. Far less is known about how such results affect symptomatic individuals and their caregivers.MethodsRandomized controlled trial of 82 mild cognitive impairment (MCI) patient and caregiver dyads (total n = 164) to determine the effect of receiving amyloid positron emission tomography results on understanding of, and perceived efficacy to cope with, MCI over 52 weeks of follow‐up.ResultsGains in the primary outcomes were not consistently observed. Amyloid negative patients reported greater perceived ambiguity regarding MCI at follow‐up, while moderate and sustained emotional distress was observed in patients, and to a lesser extent, caregivers, of those who were amyloid positive. There was no corresponding increase in depressive symptoms.DiscussionThese findings point to the possibility that both MCI patients and caregivers may need emotional support after the disclosure of amyloid scan results.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163444/2/alz12129_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163444/1/alz12129.pd

    Characterization of the LM5 pectic galactan epitope with synthetic analogues of ÎČ-1,4-d-galactotetraose

    Get PDF
    Plant cell wall glycans are important polymers that are crucial to plant development and serve as an important source of sustainable biomass. The study of polysaccharides in the plant cell wall relies heavily on monoclonal antibodies for localization and visualization of glycans, using e.g. Immunofluorescent microscopy. Here, we describe the detailed epitope mapping of the mab LM5 that is shown to bind to a minimum of three sugar residues at the non-reducing end of linear beta-1,4-linked galactan. The study uses de novo synthetic analogs of galactans combined with carbohydrate microarray and competitive inhibition ELISA for analysis of antibody-carbohydrate interactions

    High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles

    Get PDF
    Antibody-producing hybridoma cell lines were created following immunisation with a crude extract of cell wall polymers from the plant Arabidopsis thaliana. In order to rapidly screen the specificities of individual monoclonal antibodies (mAbs), their binding to microarrays containing 50 cell wall glycans immobilized on nitrocellulose was assessed. Hierarchical clustering of microarray binding profiles from newly produced mAbs, together with the profiles for mAbs with previously defined specificities allowed the rapid assignments of mAb binding to antigen classes. mAb specificities were further investigated using subsequent immunochemical and biochemical analyses and two novel mAbs are described in detail. mAb LM13 binds to an arabinanase-sensitive pectic epitope and mAb LM14, binds to an epitope occurring on arabinogalactan-proteins. Both mAbs display novel patterns of recognition of cell walls in plant materials

    Dissection of cell wall assembly dynamics during early embryogenesis in the brown alga Fucus

    Get PDF
    Zygotes from Fucus species have been used extensively to study cell polarization and rhizoid outgrowth, and in this model system cell wall deposition aligns with the establishment of polarity. Monoclonal antibodies are essential tools for the in situ analysis of cell wall glycans, and here we report the characteristics of six monoclonal antibodies to alginates (BAM6–BAM11). The use of these, in conjunction with monoclonal antibodies to brown algal sulfated fucans, has enabled the study of the developmental dynamics of the Fucus zygote cell walls. Young zygotes are spherical and all alginate epitopes are deposited uniformly following cellulose deposition. At germination, sulfated fucans are secreted in the growing rhizoid wall. The redistribution of cell wall epitopes was investigated during treatments that cause reorientation of the growth axis (change in light direction) or disrupt rhizoid development (arabinogalactan-protein-reactive Yariv reagent). Alginate modeling was drastically impaired in the latter, and both treatments cause a redistribution of highly sulfated fucan epitopes. The dynamics of cell wall glycans in this system have been visualized in situ for the first time, leading to an enhanced understanding of the early developmental mechanisms of Fucus species. These sets of monoclonal antibodies significantly extend the available molecular tools for brown algal cell wall studies
    • 

    corecore